1. 위상공간의 정의 [Problem 1.0] \(X\)가 무한집합이고 \(X\) 위의 위상 \(\mathcal T\)가 \(X\)의 모든 무한 부분집합을 열린 집합으로 갖는다고 하자. \(\mathcal T\)가 이산 위상공간임을 보여라. 더보기 # Solution ▶ (Proof) 집합 \(X\)의 임의의 원소 \(p \in X\)에 대하여 \(X\ \backslash \ \{p\}\)는 무한집합이므로 이 집합은 가부번집합 \(\{x_n: x_n\in X, \ n\in \Bbb N\}\)을 부분집합으로 갖는다. 이때 \[A=\{x_{2n-1}: x_{2n-1}\in X, \ n\in \Bbb N\}, \quad B=\{x_{2n}: x_{2n}, \ n\in \Bbb N\}\]는 서로소인 \(X \ ..